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ON FREE OSCILLATIONS OF A VISCOUS INCOMPRESSIBLE FLUID 

IN SEMI-INFINITE CHANNEL* 

E.V. BOGDANOVA and O.S. RYZHOV 

The motion of a viscous incompressible fluid in a semi-infinite channel is consider- 
ed in the linearized theory of free interaction /l-3/. At some distance from the 
intake the independently developing on both side walls boundary layers begin to an- 
teract over the potential main body of the stream /4,5/. Concurrentlyinthechannel 
appear symmetric and antisymmetric oscillations withawave length of the order of 
the channel width. For this and other perturbations the first modes can be either 
stable or unstable, but the region of instability for symmetric oscillations is 
shifted to the side of lower frequencies. In a shift into the channel, the sym- 
metric perturbations become longer-wave by comparison with antisymmetric ones. When 
the ratio of distance from the inlet to the channel width becomes of the order of 
the Reynolds number, a degeneration of the symmetric perturbations occurs, which is 
predicted by the theory of free interaction. 

1. Asymptotic equations. Let t* be the time, r*and y*be the Cartesian coordinates, 
u* and v* be the components of velocity vector,p* be the pressure, and p*the density (con- 

stant). Let us consider a channel, whose walls are specified by the equations y* = T ‘l,b+. 

We assume for definiteness that at its inlet z* = 0 a uniform stream V,* = const is realiz- 
ed. As shown in /6,7/, this obvious, at first glance, condition is artifical, since its ful- 
fillment requires some mechanism, which would neutralize the small pressure gradients induced 
by the boundary layers. The result is the presence of weak vorticity in the inviscid part of 
the stream. Subsequently it will be sufficient to know only the principal term of the in- 
viscid solution in the intake neighborhood, hence the consideration of selection of the most 
natural condition, at x* = 0 can be omitted. 

Assuming the Reynolds number higher than unity, we determine it by the channel width b* 

velocity U,* and kinematic viscosity v*. We shall consider that the free interactionofbound- 
ary layers with the uniform stream in both walls neighborhood at a distance of order O(ReFb*) 
from their boundaries can be described by the three-stage model /l- 3/ of flow with the 
characteristic longitudinal dimension O(Ab*), which include the external regions 1 and 2 of 
the potential velocity field with equal scales in the longitudinal and transverse directions, 
the intermediate regions 3 and 4 of local inviscid but vortex boundary layer of thickness 
0(86*), and the narrow nearest to the walls region 5 and 6 of width O(Re-'M'~*A'M*), Mhere 

the effect of viscosity is substantial. Since the length of the region of free interchange 
always exceeds the boundary layer thickness, hence S<A. The parameters of fluid in each 
of the regions will be represented in the form of asymptotic expansions. 

We denote by 2, the relative distance of order unity from the inlet, by pm the constant 
part of the dimensionless pressure, and by [Jsthe function by means of which is established 
the profile of the longitudinal component of velocity in the Blasius solution. Then in regions 

1 and 2 we have 

t*U_*/b* = ReWi’~~A’M, r*lb* = Re 64, + Ax 

y*lb* = T l/z + AY,,, 
u*/u,* = 1 + E4.2 (t, 2, Y,,,) + .*a 
u*/u,* = Eul,p (t, 2. y,,3+ . ..1 P*I(P+U,**) = Pa + ep1.s (2, XT Y,,,) + ... 

(1.1) 

In regions 3 and 4 the relations are satisfied 
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l&*/U,* = Us (y& + Re-‘M-‘~~A’~ru~,4 (6 x, y& + . . . 
v+p,* = Re-‘Wl*A31*v~,4 (t, X, ~8.4) + . . . 
p*~(P*~,*z) = p_ + Re-%-‘l*A’lrps, (t, I, I/~,,) + . . . 

and in regions 5 and 6 the following formulas are valid 

t*U,*/b* = Re’l*~ld’l~t, x*/b* = Re b2x, -j- AX 

y*/b* = f + + Re-'JW~I~y5~a 

l&f/U,+ = Re-'MYJ~A'~w6,5 (t, I, ~5.6) + . . . 
v*/u,* P Re-W-‘)*A-‘h,,, (t, x, y& + . . . 

~*j(p+U,*~) = pa + Re-Wi-‘Jd%~,s (t, 5, YWS) + - - - 
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(1.2) 

(1.31 

The scale coefficients 6 and A, and also the amplitude factor E are expressed by some 

powers of the Reynolds numbers,which are changed at the change at modes of flow. Below we 

assume that 
Re-'l&M'~*<1, E<I 

Parameter S <I is in all cases, except the limit one which is realized when the bound- 
ary layers join at the axis of the channel. For the limit mode 6 = 0 (1). 

Let us substitute the expansions (l.l)- (1.3) into the Navier-Stokes equations for the 
incompressible fluid and, wherever possible, carry out partial integration of relations that 

obtain for the sought functions of the first approximation. As the result, for the 1 and 2 

regions we find 

In regions 3 and 4 the solution is 

(1.4) 

(1.5) 

Pa.4 = 
I 

UBz (Y) dY, Re-‘l+“f*A’l* = 1, 

1 0 

with arbitrary functions ~2,~ (t, I), Ps.4 (t, X) and A3,* (t, z). The lower expressions for the sur- 
plus pressure, which contains the dependence on the second derivative c9*A3,4/3x2, that is propor- 
tional to the curvature of the streamline, is used only in the case of limit mode when b= 

0 (1). 
Finally, for regions 5 and 6 we have the following Prandtl equations 

(1.6) 

The boundary conditions at the walls are obvious: u~,~ = v~,~ = 0 for ~6,~ = 0. The lacking 
boundary conditions are determined, as usual, by the requirement of merging solutions for 
neighboring regions. Leaving to the end of the article the study of limit propertiesofthe 
stream with 6 = O(1) we find that at the boundary of l- 3 and 2-4 the following formulashold: 

(1.7) 

Selecting the constant h = 0.3321 on the asymptotic representation of the Blasius solu- 
tion near the wall, at the boundaries of 3- 5 and 4-6 we obtain 

p5.s = Pw (t? 4 (1.8) 

ub,,, + W"'Y~,, - + @'A,, 0, r), YS,S 4-f 00 



From (1.7) follow the requirements 

a = Re-'/@/&-V~, ~e'li~'/a~-‘i~ = 1 (I.": 

Thus one of the parameters 6 or 3 remains arbitrary, and it IS by 'chrs that the present 
analysis differs from the one used in the theory of free interaction /l-33/. This is explain- 
ed by the lack of tie between the thickness of unperturbed boundary layers and the introduc- 
tion of the Reynolds number over the channel width. If we set now 6 = Re-a. then 

A= &(I-~)/*, a I Re(~-lJ/? (1.10) 

As long as 1 >a>':,, the external regions 1 and 2 width is considerably smaller than 
the channel width, and the problems at both walls are formulated separately, and for all per- 
turbations the condition of their damping in the transverse direction is introducedas y, - 00 
and y,-+--1 respectively. This case was in fact considered, when the variables YL,~ were 
introduced in the third of formulas (1.1). When CC attains the value l/5 (which gives the 
distance Re”f* zsb* from the inlet), the equalities A = 1.8 = Re-‘1s foiLLow from (1.10). The first 
of these means-that the dimensions of regions 1 and 2 become of the order of channel width, 
and they overlap, forming a single potential core for both boundary layers, through which 
their interaction is effected. When 6 = Re-‘f* and A = 3 it is expedient to joint the re- 
gions 1 and 2 in region 0 with the transverse coordinate y defined by formula y = TIT2 + yl,z. 
Such shift does not alter the form of Eq.(1.4) and of boundary conditions 11.7). From here, 
the previous conditions of damping of all perturbations in the transverse for the independents 
regions 1 and 2 are replaced by the boundary value probl.em for Eq.Cl.4) which is satisfied b\ 
functions C+VO and p. in the band of region 0. 

The flow mode which is described by the mathematical model with five-stage structure of 
velocity field was considered in /4,5/. The analysis of that mode reduces to the simultane- 
ous integration of Eqs.(l.$) and two systems of Prandtl equations (1.6). The relationoftheir 
solutions fs achieved using common functions ps,s(t,x) = p~~,~(t,tf and A3.4(trx) which appear in 
the boundary conditions (1.7) and the lrmit conditions (1.8). 

2. Free oscillations. In conformity with (1.41 functions u0 and p. rn region If satisfy 
the Laplace equation and are harmonically conjugate. We denote by a the amplitude of pertur- 
bations, and by band d the arbitrary constants, and define the solution as 

(yO, po) = r~ [&_@ .+ de-“‘, I (-_be-“v + d&‘)i et(Oi+*x) C2.1) 

In region 5 and 6 we represent the sought parameters of fluid in the form 

(2.21 

which for a<<l gives the corresponding small deviatrons for the BLasius solution for the 

boundary layers at the Lower and upper walls of the vessel if pe = E.x,-'f:. The values of con- 
stants pa,e, yae will be established below. 

The linearization of Prandtl equations (1.6) and the derivation of ordinary differential 
equations for functions f5 and fs and their integration follow the basis outlined in /%/. We 
present the final result 

12.3) 

where the complex variables zj+ = 5 Ij, (i/~~~)'/ay~,~ with i = &'/so (pLek)-‘/*, and Ai (z) is the Airy fun- 
ction. These expressions automatically satisfy the conditions of fluid sticking ud,a = v5,,, = 0 
when ysb = 0 (z$,~ = 5). For the selectionof regular branch of function k’l* appearing in the 

definition of G.,B we make in plane k a slit along the positive imaginary semiaxis and set 

-3ni2 < arg k = 8, < nJ2. 
One can verify that solution (2.1) satisfies the boundary conditions 11.7) only then,when 

the constants g,,, ys,o are linked by the following relations: 

(p5 + Be) sh ‘i,k -t k (ye - ~5) ch ‘lpk = U (2.4) 

(&, - ps) ch’i,k -t k (ys -I- ys) sh’!,k = 0 

Further two relations 

(2.5) 
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between j3& and ys, and bB and ys are determined by the limit conditions dj,, (F 00) I dY*o = 
~~~~~~ for the unknown functions which follow from (1.8). 

Equations (2.4) and (2.5) form a homogeneous system of four unknowns. However they ad- 

mit decomposition with respect to the quantities & $ pa, ye--ys and fi*- pa, 76 -!-ys into two 
homogeneous second order systems, whose nontrivial solvability is defined by the equality to 
zero of the corresponding determinant, the existence of nontrivial solution of one system un- 
avoidably implies its absence in the other system. 

Thus at the inlet of the channel axe possible two types of perturbations /5/z symmetric 
and antisymmetric with respective dispersion relations 

~~~~(~)=~(~~~/~ cth X/nk (b=& ys= - ys) (2.6) 

p:"@ (5) = !C (ik)'/* th ‘,‘z k (& = - &, y6 = ys) 

Each type of perturbations possesses his own frequency-wave spectrum, the two spectra 
provide a full set of natural frequencies and wavenumbers of free oscillations. In any case 

one of the constants in solution (2.2) remains arbitrary. 

3. Properties of spectra. Using the results related to the free interaction of a 
boundary layer ontheinsulated plate /9/, we can state that to each specified k (or o) in 

the complex plane j corresponds a countless multiplicity of roots lying in the neighborhood 
of the negative real semiaxis. We denote nrg j = d = ?I -/-6' and set 15 1-f m, as fi' 15 lJ/2-+ 0. 
On the basis of the asymptotic representation of the Airy function that remain continuous at 
points of the real negative semiaxis, from (2.6) we obtain 

from 
have 

which directly follows the formulated statement. Asnumber j+ea and jk[+O, we 

(3.1) 

The equality (3.2) means that for fixed real oin the complex plane k the sequencies cj 
for each of the dispersion relations corresponds an infinite succession of roots kj exists in 
the neighbarhood of ray aqk = -5nf4 with the point of thickening at the coordinate origin. 
The presence of hyperbolic functions in the right-hand sides of (2.6) and (2.7) entail in the 
complex plane the existence k for symmetric and antisymmetric oscillations further three in- 
finite sequencies of roots. The two of them lie along the slit sides arg k = n/i? and arg k = 
---3x 3 , and one in the neighborhood of the imaginary semiaxis. In fact, cth ‘i,k = 0 when 
k = cn(& _t 1)+ n = 0, i....; similarly th ‘i,k = 0, if k = ihni, n = 0,1, . . . . Setting n 
reasonably large, we write 

(3.3) 

where linr 1 k,,' 1 = 0. We substitute in the left-hand sides of (2.6) function Q(c) by its 
limit value @((o), after which we represent both dispersion relations in the form 

~~'~(O} = I/~~I~/~~~~~~' 

Since Ct, (0) = -3'!a1‘-' (*'3). we finally obtain 

k,, ‘- - - 2.3%~-'/a~~,/"r-~ (1/3) eW'b-'b4 x 
i 

(211 + i)"", p6=,35 
(2,*)_,," 

9 $6 = - fl15 

The sequence of roots ii, lying along the slit sides argt = rr!2 and argk = -3n'2 generate 
two systems of waves propagating downstream from the source. Roots k, from the sequence in 
the neighborhood of the negative imaginary semiaxis provide an infinite train of waves moving 
upstream. 
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Let now in accordance with the basic concepts of the linear theory of stability, the 
frequency @assumes any complex values and at the same time, the wavenumber k is real. We 
shall calculate the critical value of k * passing through which the imaginary part o changes 
its sign. The condition Im o = 0 defines running waves of Tolmin- Schlichting in which are 
accomplished neutral oscillations of fluid at constant time independent amplitude. 

The trajectories of several first roots from the sequence (3.1) in plane o when .Ue= 1 
are shown in Fig.1 for dispersion relations by solid and dash line respectively. The arrows 
indicate the direction in which k increases. The roots from the sequence (3.3) havenoanalogs 
in plane 0. The intersection by curves o1 of the axis of abscissas means that the amplitude 
of the first mode can degenerate with time, or exponentially increase. All remaining modes 
are stable. The region where Imo,>O is substantially narrower for symmetric perturbations 
than for antisymmetric. As mentioned in /5/, the critical values of o* and k, for Eqs.(2.6) 

Fig.1 

can be found by simple recalculation oftherespective critical val- 
ues of the incompressible boundary layer on an isolated plate. In- 
deed, in both problems compared with each other, the arguments of 
the right-hand of dispersion relations are the same for real o and 

k. The calculations for ps=l yielded for symmetric perturba- 
tions oe8= -0.5736, k,, = 0.1248 and for antisymmetric perturbations 

e*o = -2.9270, k,, = 1.4382. 

However, by definition parameter pc=X~e-L/2 definesthedistance 
from the channel inlet. The nature of variation of curves 0, in 
dependence of pd is seen for symmetric oscillations in Fig.2 and 
of antisymmetric in Fig.3. With increasing P's, which corresponds 
to the shift towards the intake aperture and to independent bound- 
ary layers on the walls, the region of stability for both perturba- 
tion types expand and become of the same order. Conversely, the 
decrease of p, leads to a sharp narrowing of the low frequency re- 

gion of stability symmetric perturbations in comparison with antisymmetric. It is,therefore, 
necessary to consider in greater detail the development of perturbations with the increase of 
distance from the inlet, when the boundary layer thickness becomes greater on the walls than 
0 (Re-“lb*). 

4. The merging of boundary layers. When the distance from the inlet exceeds by 
order of magnitude O(Re'/*b*), it is necessary to set in formulas (1.10) the exponent O<a < 

'15, then A>l. As the solution in the potential region 0 is necessary to use not the full 
expressions in formulas (2.11, but only their principal terms proportional to integral powers 
of the small parameter A-*. We have 

v0 = a [(b + d) _t (b - d) A-‘ky + ‘/z (b + d) A-*k2y2 f. . . . 1 ei(et+kx) (4.1) 

p0 = a [(-b + d) + (b + d) A-' ky + ‘i, (--b + d) Am2k2y*J ei(at+W 

where the previous variable y is related to thevariable y, = ;FL/2A-' + y,_, by the equality y = 

AY,. Indeed, turning to the general case a#'/, it is necessary to take into consideration 

that solution (2.1) of Eqs.(l.4) contains precisely the variable y,. If one takes as valid 

relations (1.9) or makes equivalent supposition about the equality of scales of symmetric and 

-2 -2 
-6 -4 -2 0 -6 -4 -2 0 

Fig.2 Fig.3 

antisymmetric perturbation, then one can readily ascertain that the problem has only the tri- 

vial solution b = d = 0. Let us consider both solutions separately. 
We begin with symmetric oscillations for which b + d = 0. Then from expansions (4.1) and 

conditions of merging (1.7) we obtain instead of (1.9) the new relations 
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for the scale multipliers, whence let 6 = Re-a we find 

A = Rex-w, E = Red (4.2) 

For ci = '1, we revert to formulas (l.lO), when it is possible to apply the developed 

above approach. If 0 < a < ‘if,, then all reasoning is carried out similarly to the method 
set out in Sect-Z. The single difference consist in the form of relation between constants 

PI + i% and Ys - Yb* The second of Eqs.(2.4) is replaced by 

(PI + fib) + 2 t,h - Yb) = ’ (4.3) 

As the result, the dispersion equation becomes 

pe'/4 (6) = 2 (ik)‘/* (4.4) 

The dependence (4.3) has a simple physical interpretation: in a dimentionless system of 
reference units the self-induced pressure 

pa + pb = 2 (-‘la - A,) 

is equal to double the shift of streamlines lying on both sides of the channel axis. 
For antisymmetric oscillations b - d = 0. The expansions of (4.1) and the conditions of 

merging (1.7) instead of (1.9) provide 

e = Ra"l+'1~A%, Re'Mj%A-'I*= 1 

and, as the result of substitution of 6 = Re-a we further have 

A = R&-WV?, e= R&-W? (4.5) 

When a = '1, equalities (4.5) are the same as (1.10). The lowering of a resultsin that 
the first of Eqs.(2.4) which binds the constants ps - bb and ys + yb changes as follows: 

2 (i% - BE.) + k2 (Vs + Yb) = 0 (4.6) 

and leads to the dispersion equation of the form 

p;/@ 15) = ‘/,k” (ik)‘l* (4.7) 

The physical meaning of the dependence (4.6) is evident: in conformity with it the self- 
induced pressure 

is expressed in terms of curvature of streamlines lying on different sides of the axis of the 
channel. Correct within the coefficient of proportionality a similar representation of the 
surplus pressure is given by the lower line of (1.5). 

The comparison of (4.2) and (4.5) shows that the wave length and the transverse dimens- 
ion of the boundary layers 5 and 6 nearest to the wall which is proportional to the product 
Re-'l@*A'h for the symmetric perturbations arising in a plane channel increase with distance 
from its inlet much quicker that in the case of antismetric. 

To complete the analysis expounded above, it remains to deal briefly with the limitcase 
a = 0, in which according with the asymptotic formulas (1.2), the boundary layers 3 and 4 
merge, fill the whole channel and form a flow that is transitional to Poiseuille flow. For 
symmetric oscillations we have 6 = 1, A = Re,e = 1. Since the boundary layers 5 and 6 increase 
the thickness to the channel width, by virtue of relation Re-Wl*A’l* = 1, the inviscid core 
disappears from the velocity field. Recalling formulas (1.5) we conclude from equality (4.3) 
that with the disappearance of the potential core 0 and of vortex regions 3 and 4, the sym- 
metric part of pressure must be determined by the function which is discontinuous on the 
channel axis y = 0 and which specifies the shift of streamlines. 

It is shown in /lO,ll/ that the theory, which includes the multistage structure of the 
continuous velocity field, of free interaction for the incompressible fluid is equivalent to 
the linear theory of stability which is based on the Orr-Sommerfeld equation, on condition 
that the critical layers are adjacent to streamlined walls. Inthelimit case, whentheratio 
of wave length and the distance from the inlet to the channel width becomes of the order of 
the Reynolds number, the critical layers 5 and 6 fill the whole channel; naturally the nature 
of such perturbations is not defined by the theory of free interaction. As the result, the 
dispersion relation (4.4) loses its validity. 

Let us now turn to antisymmetric perturbations for which the parameters 6 = 1, A = Re%, 
E = Re-'/, for a=O. The inviscid core of stream is maintained in connection with that 
Re-'/s6-'/*A'/a = R&/T the close to the wall layers 5 and 6 remain essentially thinner thanthe 

channel width. The'drstance from the inlet is estimated as before by O(Re b*), the adduced 
scales arise in the linear problem of the stability of flow of the Poiseuille flow /ll/. 
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Obviously they are characteristic also for the intermediate flow in which is accomplished the 
transition from the velocity distribution formed by two interlocked Blasius profiles, to a 
parabolic distribution. Since in the limit case the relation Re-'j@I*A,'I* = 1 is fulfilled, 
hence in formulas (1.51 it is necessary to usethefowar expression for the self-induced pres- 
sure which varies across the inviscid kernel of the flow consisting of joined regions 3 and 4. 
The derivative of the surplus pressure along the coordinate y is determined by the velocity 
graph of the basic motion of fluid in the fixed cross section x = const. The arising in the 
formulated problem of dispersion relation differs from (4.7) only by the coefficient in the 
right-hand side. 

fn /12/ are presented data of numerical computation of the characteristic of flow stab- 
ility at entry to the semiinfinite channel in relation to antisymmetric oscillations. In these 
computations the velocity profile of the basic stream was determined by integrationofPrandt1 
equations throughout the region bounded by the solid walls. Since the discovered in /6,7,1 
vorticity was neglected in the cited paper, its results are rather of a qualitative character 
than quantitative, although the tendency of development of the profile development of the 
velocity longitudinal component of the unperturbed stream along the length of the channel was- 
obtained as in the asymptotic theory. It is natural that the form of the velocity profile 
in the basic stream that is determined by the distance from the inlet, has a desicive effect 
on the characteristic of stability. It is importanttonote that the comoutations confirm the 
instability of the investigated fluid motion with respect to even more longwave perturbations 
for shift into the channel. 

REFERENCES 

1. NEILAND V.Ia., Asymptotic problems of the theory of viscous supersonic flows. TX. TsAGI, 
No.1529, 1974. 

2. STEWARTSON K., Multistructured boundary layers on flat plates and related bodies. Xn: Ad- 
vances in Appl. Mech., Vo1.14, N.Y. Acad. Press, 1974. 

3. RUBAN A.I. and SYCHEV V.V., Asymptotic theory of separation of laminar boundary layer in 
incompressible fluid. Uspekhi Mekhaniki, Vo1.2, No.4, 1979. 

4. SMITH F.T., On entry-flow effects in bifurcating, blocked or constricted tubes. J. Fluid 
Mech., Vo1.78, No.4, 1976. 

5. SMITH F.T. and BODONYI R.J., On the stability of the developing flow in a channelorcrrcu- 
lar pipe. Quart. J. Mech, Appl. Math., Vo1.33, No.3, 1980. 

6. VAN DYKE M., Entry flow in a channel. J. Fluid. Mech., Vol.44, No.4, 1970. 
7. WILSON S.D.R., Entry flow in a channel, Pt. 2. J. Fluid Mech. Vo1.46, No.4, 1971. 
8. RYZHOV O.S. and TERENT'EV E.D., On unsteady boundary layer with self-induced pressure. PMM 

vo1.41, No.6, 1977. 
9. RYZHOV O.S. and ZHUK V.I., Internal waves in the boundary layer with the self-induced pres- 

sure. J. Met. Vo1.19, No.3, 1980. 
10. SMITH F.T., On the non-parallel flow stability of the Blasius boundary layer. Proc. Roy. 

Sot. Ser. A. Vo1.366, No.1724, 1979. 
11. ZHUK V.I. and RYZHOV O.S., On the free interaction of nearest to the wall boundary layer 

with the core of Poiseuille flow. Dokl. AN SSSR, Vol.257, No.1, 1981. 
12. GUPTA S.C. and GARG V.K., Effect of velocity distribution on the stability of developing 

flow in a channel. J. Phys. Sot. Japan. Vo1.50, No.2, 1981. 

Translated by J-3.13. 


